
Alexandros Kofteros, PhD

PYTHON
IN SIMPLE WORDS

pri
nt(

)

int
(in

put
())

whi
le

ran
ge(

)

Quick tutorial for beginners

Python in simple words
Quick tutorial for beginners

Translation in English: Zoi Karageorgiou

© 2023 Alexandros Kofteros. All rights reserved.
Distributed digitally under a Creative Commons

Licence.

Nicosia, 2023
 978-9925-8055-0-1

Images were created with Microsoft Bing

Special Thanks

for their valuable time in reading each version of the guide and
continuously sending detailed suggestions and feedback:

Pola Misthou, teacher (Greece)

Vaso Servou, teacher (Greece)

Ζοι Karageorgiou (Greece)

Diamanto Georgiou, teacher (Cyprus)

Antonis Foinikarides, IT (Cyprus)

George Kyprianou, educator (Cyprus)

Marios Charalambous, graphic designer (Cyprus)

About this book
Welcome to our book for Python! This is the first attempt to
create a simple introduction guide to this programming
language, aimed at teachers and students aged 10+.

This book primarily targets individuals new to programming,
embarking on their initial learning journey, and aspiring to
acquaint themselves with a reasonably proficient language.

The book is divided into four parts: in the first part we will
learn more about programming languages, with an
emphasis on Python. In the second, we will get to know basic
Python commands, through simple examples. In the third we
will cover additional functions of Python, with an emphasis
on creating geometric shapes. In the fourth part we will get
to know Python programming environments for IoT and
educational robotics applications (BBC Micro:bit and
MeetEdison).

In this booκ we are going to…

• acquaint ourselves with the basic
features of programming
languages

• get to know the history of Python

• learn and use Python commands

• create geometric shapes with
Python

• program devices like micro:bit
and MeetEdison using commands
in Python

Welcome!
The guide in front of you (or book, if you prefer) started in
July 2021 as an aid (notes) for my son, to learn Python.
Along the way, Konstantinos took up C++, which he really
likes, while I put the Python book on hold to focus on the
Computer Museum's educational program. Two years later,
and after going through TOO many changes, the first
edition of my book is ready.

The reason for its creation is simple: I wanted to return to
the logic of the 1980s, where we opened our computer
(Spectrum, AMSTRAD CPC, Commodore 64, etc.) and saw
in front of us the BASIC options. For some reason, we all
liked to create an infinite loop.

By the same token, I wrote a book aimed at young ages
(10+) that attempts to put our fingers back on the
keyboard!

Python! Monty Python!

PART Α’: COMPUTER PROGRAMMING

1. Introduction toProgramming

10 | print (“And what is the use of a book

20 | without pictures or conversation?”)

50 | #Alice in Wonderland

1. What is Python?

Everyone knows that pythons are cute animals. Of course,
we would never advise you to approach one, not even as a
joke. If you ever happen to be in a country with pythons, it's
advisable to steer clear of areas where they inhabit. They
don't like strangers, especially people, approaching their
nests.

In this book, of course, we will not deal with these nice
animals (which, as we said, we won’t bother them), but with
a programming language, particularly widespread and
capable of creating complex applications.

Did you know?

The language got its name, not from this lovely animal, but
from the legendary Monty Python. Oh yes, that is the
"secret" behind the name of this language.

In Chapter 1: “Introduction to Programming”, we are
going to learn:

• What are programming languages?

• How man communicates with computer through
programming?

• Which programming environments do we use in
education?

• The creation of the Python language.

• How do we download and install Python on our
computer?

What we are going to learn:

A program (or code) is a series of commands that we give,
usually via keyboard, to execute one or more instructions.

The first computers were built to do very specific tasks (eg
specialized mathematical calculations). These computers
were mainly used in the 1940s and 1950s and were
programmed in "machine language", a language that
makes sense to the computer but not to humans (with the
exception of "machine language" connoisseurs).

Programming this way was very complex, and as
computers evolved - and gained new capabilities - it was
very difficult even for the most skilled programmers.

In the 1950s, the first programming languages that were
developed were -somewhat- simpler than assemblers, but
were still complex. At the same time, programming
languages closer to our own began to be developed.
Some of the best known of the 1950s were FORTRAN,
developed by IBM, and COBOL, developed by Grace
Hopper.

Welcome
world!

01001011
00110011

High Level Programming Languages

Low Level Programming Languages

Human Languages

CO
M

PILATIO
N

Greek, English, Japanese etc.

Python, Java, C++ etc.

Assembly, Machine Code

こんばんは

ワールド

In this book we will deal exclusively with Python. But
computer programming in schools began in the 1960s
with the creation of LOGO in 1967 by Seymour Papert, a
tireless teacher who especially loved children and
education.

With LOGO, which they initially programmed with a ground
robot, they were able to create geometric shapes. For
example, to create a 90 degree angle, we must give the
commands:

 FORWARD 10
RIGHT 90
FORWARD 10

Another language that was used quite a bit in schools,
mainly in the United Kingdom, was BASIC (Beginners All-
purpose Symbolic Instruction Code).

It is one of the simplest programming languages created,
and was mainly used by novice users. In the 1980s, all
personal υπολογιστές είχαν ενσωματωμένη ή
περιλάμβαναν σε δισκέτα (ή και κασέτα) μια μορφή της
BASIC.

In BASIC, to display the Hello World message on the
screen, we had to type the following command:

10 PRINT “HELLO WORLD”

BASIC has now been replaced by other languages or
programming environments that offer great convenience
to the novice user and more features. However, some
software development environments, such as AOZ Studio,
are based on BASIC.

Programming in LOGO and BASIC at schools, and
especially at a young age, encountered a serious problem
(there were others, but let's stick to this one...):

the children had to memorize several commands and all
of them had to know the English language, as there was
no LOGO or BASIC (their commands) in other human
languages.

Both of these problems, at least for the small classes (Pre-
Primary - 4th Grade) were solved before the end of the
2000s, with the development of the Scratch programming
environment, which was based on blocks that any user can
connect and create a program. Scratch Jr for tablets
followed a little later, with an even simpler environment,
which easily allows Pre-Primary and First Grade children to
learn programming.

Scratch is now used in many other technologies, such as
educational robot programming software (MeetEdison,
mBot, LEGO Spike Prime, Arduino, etc.).

The Creation of
Python
Python was created in the late 1980s by Guido van Rossum
in the Netherlands, with its initial release in 1991. It is a
high-level, general-purpose programming language. One
of its most important features is the code’s readability,
which makes it particularly easy to learn, program, and
maintain large programs written in it.

Python’s capabilities can be significantly expanded through
modules and libraries. We'll get to know additional
features of Python in a later chapter when we will create
shapes using commands.

Installation of Python

The simplest way to program in Python is by installing the
necessary packages-files from the official page:

 https://www.python.org/downloads/

From this link we can download the version for our
computer (don't worry, the website will automatically
detect the type of computer you are using). We should
emphasize that Python and all its related packages, as well
as learning and usage guides (of the website) are
c o m p l e t e l y f r e e .

After downloading the file, we run the installation process.
On Windows, we can install Python directly from the
Microsoft Store (image below).

https://www.python.org/downloads/

Programming Environment IDLE Shell 3.11.

The image above shows the contents of the Python
programming environment. The first line shows the version
of Python we are using, as well as the operating system
environment.

In the last line the symbols >>> appear (in the margin) .
After them we can type our commands in Python.

Next, we will get to know basic Python commands.

What have we learned
so far?
• We have learned about programming languages,

which allow humans to communicate with computers.

• We read about programming languages and
environments used in education.

• We have gained knowledge about the history of the
Python language

• We have installed Python on our computer.

Activities
• Try Scratch Jr and/or Scratch. They can be both installed

on tablet or on your computer via Google/Play Store (or
Windows Store), while Scratch also “runs” online:
https://scratch.mit.edu

• A good introduction to programming is code.org
activities. Try the introductory activities from the
following link:
https://code.org/educate/csf#pick-a-course

Δραστηριότητες
• All Can Code: an online introductory programming

game. You can try it from here:
https://runmarco.allcancode.com

• CodeCombat: an online role-playing game based on
Python (and other languages). It helps instruct the
characters we control. Through a series of stages, we get
to know the syntax (albeit in a simplified form) of
commands in Python. The “Hour of Code” version allows
us to try activities from the Ozaria game as well.
https://codecombat.com/teachers/hour-of-code

https://scratch.mit.edu
http://code.org
https://code.org/educate/csf#pick-a-course
https://runmarco.allcancode.com
https://codecombat.com/teachers/hour-of-code

PART B: PYTHONS & CODE

2. Let’s learn Python

10 | print (“I don’t think”)

20 | print (“Then you shouldn’t talk”)

30 | #Alice in Wonderland

Primary commands

You must be anxious to give your first commands. Before
doing this, we should explain, for the next few pages, how
we will be working in an "interactive" mode of operation.
What does this mean; Python will execute each command
we type, one at a time. This is surely not convenient, if we
want to create a program with several commands. But it's
an ideal way to get started and get to know Python
commands, as well as programming logic.

But be careful: programming languages recognize
commands exactly as they should be written. In short, if we
make spelling mistakes in a command, then our program
will not execute it.

What we are going to learn:

In Unit 2: “Introduction to Programming” we are going
to learn about:

• Python's interactive environment, where one command
is executed at a time.

• Using print() to display information on the screen (text
and numbers).

• Using Python as a calculator.

• Variables, types of variables and how we use them.

• Lists, and how we use them, as well as the differences
between lists and variables.

• The “if…” condition and making decisions with it.

• Input data with the keyboard with input().

Let's look at our first command. Notice how the
programming environment colors the commands.

The print() command does not print anything on paper. It
shows messages on our screen. In the example it displays
the message “Hello World”. In short, whatever we put in
the parentheses, when we press the ENTER key on our
keyboard, will appear on the screen.

You'll notice that Hello World doesn't appear in quotes.
And quite rightly it is not displayed, as the quotation marks
only serve to "tell" Python what text to display on the
screen.

We will now try the same message, but without the closing
quotes. Let's see what happens...

Note the differences: the parenthesis, in the second case,
appears in green, not black.

Because we didn't close the quotes, Python thinks we're
still typing text to display on the screen. When we pressed
the ENTER key on the keyboard, the command wasn't
executed because there is a problem with its syntax!

 Print() command so far:

With print() we can display text (or strings
of characters) on the screen. In order for
the command to be executed, our text
inside the parenthesis must be in
quotation marks.

 >>> print(“This is just a text”)

As we have seen, each command is executed by pressing
ENTER on the keyboard. If we want to display more lines of
text, the simplest way is not to close the parenthesis. Press
ENTER at the end of the line and type the next phrase/line.
Every time we press ENTER (without closing the
parenthesis), it simply changes the line without executing
the command.

In the image above, notice the 3 dots in the box. This
indicates that the command has not been executed yet.
But when we close the parenthesis, the command is
complete and - by pressing ENTER - will be executed.

In execution, one line will not appear below the other. It
will appear one after the other:

This is the first lineThis is the second
lineThis is the third line

Later we will see how we
can display text on
different lines.

Working with
numbers
So far we have used the
print() command to display
text on the screen. Let's see

what happens if, instead of text, we use numbers.

See the example above: in the first line, inside the
parenthesis we had the number 1234 without quotes. On
execution, the number of the bracket appeared.

In the second command “1234” was in quotes. It
immediately appeared in green. When the command was
executed, the number 1234 appeared again.

The result seems to be the same, but there is a big
difference, which we will see next!

Let's look at the example again. This time we are going to
use the addition sign.

In the first line, as shown in the image below, we have the
numerical sentence in quotation marks. Python displays
whatever is inside the quotes exactly as we typed it.

In the second command, which we haven't used quotes,
Python thinks that we want to display on the screen the
result of the operation, not the text "12+5" . So it shows
us the sum of 12 plus 5, which is 17.

Priority of operations:

Python executes the operations in the
correct mathematical order (priority of
operations). First operations in parentheses,
then powers, then multiplications and
divisions and finally additions and
subtractions.

 >>> print((10-2)*2)
 16

Let's see some examples of mathematical operations:

Addition: print(100 + 5)

Subtraction: print(100 - 5)

Multiplication: print(100 * 5)

Division: print(100 / 5)

Powers: print(5**100)

If we want to make the result displayed on the screen more
interesting, we can combine the mathematical statement
with the result of the operation.

>>> print(“12+5=“,12+5)

When the above command is executed, 12+5= enclosed
in quotes will be displayed on the screen. Then there is the
comma (,) which indicates that there is another section
within the parentheses that needs to be executed. Because
the following part is unquoted numbers, Python will do the
operation and display the result:

12+5= 17

Python, The calculator!
Python can be used to perform mathematical operations. In
the previous pages we saw how Python works, as well as
the use of the print() command. In fact, the specific
command is not needed to perform the actions. We can
directly give the actions we want, as in the image below.

We should only pay attention to the way we write decimal
numbers: in Python we always use the symbol “.” to
separate the integer part from the decimal. If we use the
symbol “,” Python separates the numbers and adds them in
pairs.

Let's look at an example:

>>>1,2 + 3,8
(1, 5, 8)

If we look at the above
operation, Python performed
addition on the digits
between the “+” symbol and
separated the first digit (1)
that was to the left of “,” and the last digit (8) that was to the
right of “, ".

In Python we always use the “.” symbol to write
decimal numbers.

In operations with decimals, the addition is
always done according to the position of each
digit (units to units, tenths to tenths,
centimeters to centimeters).

Lets get to know variables and, later, functions, which will
allow us to write more complex code.

We'll also use math to perform iterations, which we'll see in
later chapters.

Introduction to variables
So far, we've seen how to display text and numbers on the
screen. We also learned how to use Python to perform
mathematical operations. Things get a lot more interesting
when we get to know the variables!

The question is "What is the variable?".

We should think of variables as "boxes" in computer
memory, into which we place (or remove) objects. An
object can be a piece of paper with a name. Or a number.
Or a phrase. What we need to know is that, the variable can
hold one thing at a time!

To create a variable, we simply name it and give it a "value"
(content). For example:

>>> name=“George”

When we press ENTER, nothing seems to happen (no
message appears on the screen). In fact, we've created a
variable that we call name (we could have called it
anything, even SuperMarios). Then with the "=" sign we
give a value (a content) to the variable. Because the
content we're going to render is text, it's enclosed in
quotes.

Then we can type the command:

>>> print(name)

In the above command, we don't need to put the name in
quotes, because it is a variable. In essence, we are asking
Python to display the contents of the name variable on the
screen.

The word George (the content of the name variable)
appears on the screen.

George

If we didn't use quotation marks in "George", then Python
would think that inside the name variable we want to put
the content of another variable named George. Because
(currently) such a variable does not exist, an error message
is displayed.

As we mentioned on the previous page, in a variable we
can have one piece of information at a time. Let's look at
the example below:

In the first line we create the name variable and put the
word Marios in it. In the second line, in the variable name,
we put the word Eleni. In the third line, in the variable
name, we put the word Kostas. When we execute the
command print(name), the word Kostas is displayed.

Every time we give a new value (a new
content) to a variable, we replace its
previous content with the new one.

We can work with many variables simultaneously. In the
following example, we have one variable for first name and
one for last name. With the command print(name,
surname) we display the content of both variables in one
line.

Note the (,)is necessary to display the contents of more
than one variables in the same command.

In a similar way, we can assign a numeric value to a
variable.

>>> arithmos=10

In the example above, we created a variable named
arithmos and gave it the value 10, which is a number, so it
doesn't need quotes. Now let's see how to use variables in
mathematical operations:

>>> print(arithmos+5)

15

With the print command, we asked it to add the contents
of the variable arithmos (which is 10) to the number 5. So
the result is 15.

In earlier times, it was common for teachers to impose
punishments like "write 100 times and I won't speak in
class again". Fortunately, today there are no such
punishments! But if, in the time of our grandparents, there
was Python, then things for students would be much
simpler. They could simply do the following:

>>> mytext=“I will not speak in class again”

In the variable mytext, we have placed the phrase “I will not
speak in class again”. Now we will see how we can repeat it
with a simple command:

>>> print(mytext*100)

The command above displays the contents of the variable
mytext, while the symbol * and the number 100 repeats its
display on the screen.

Variables can also take the value of another variable.

>>> firstnumber=10

We have created a variable named firstnumber and given it
the value 10.

>>> secondnumber=firstnumber

We have created a variable named secondnumber and
given it the value contained in the firstnumber variable.

>>> print(secondnumber)

10

Variables can take (almost) any name we want. There are
exceptions. For example, we cannot use “print” as a
variable name. The name can also be a letter (eg
N=“School”). But not a number. We will see more later.

Working with variables
Pythons are especially smart! The same goes for Python. In
other programming languages, we need to say in advance
whether a variable will contain text, an integer, or a
decimal. Python recognizes the type of the variable itself.

Let's look at an example:

>>> myaddress=“20, Ioannou Str”

In the above variable (myaddress), we have text and
number (the street and its number). Variables with similar
content are of type String.

>>> myage=48

In the above variable (mage), we give an integer as a value.
These variables are of type Integer.

>>> myheight=1.82

In the above variable (myheight), we give a decimal
number as a value. These variables are of type Float
(floating point).

Κεφαλαία & Μικρά!

Variables can have different names, as we saw
on the previous page. We should take care that
their names are meaningful. This makes it much
easier to read the code to understand which
variables serve which purpose.

If, for example, we want to have a variable that holds the
score in a game, it would be easier to name it “score” or
“myscore” (or something similar). We could simply call it S
or S2 (if we have different scores).

When naming variables, we should also pay attention to
capitalization. See the following example:

>>> myage=48
>>> myAge=24

In the example above, we seem to have the same variable
(myage). But, in the second line, we wrote A in capital
letters. For Python, they are two different variables.

Now that we've gotten to know variables better, let's do
some more math with them. We already saw examples
where we multiplied a variable containing text by an
integer.

>>> programlang=“Python”
>>> print(programlang*4)

PythonPythonPythonPython

What happens when we add an integer to a variable that
contains text?

>>> print(programlang+5)

When we press ENTER to execute the above command, we
get the following message:

Traceback (most recent call last):
File "<pyshell#18>", line 1, in

<module>
print(programlang+5)

TypeError: can only concatenate str
(not "int") to str

We cannot add an integer (int) to a variable containing
text (str).

But let's look at something different:

>>> programlang1=“My favorite language is”
>>> programlang2=“Python”

In the above commands we have created two variables.
Now let's see how they appear with execution:

>>> print(programlang1+programlang2)

My favorite language isPython

The “+” sign has joined the contents of the two variables.
However, he has not left a space between the text of one
variable and the text of the other variable. In such a case, if

we want a distance, we use “,” instead of “+”.

>>> print(programlang1,programlang2)

My favorite language is Python

You can also practice with other symbols
(subtraction, division) to see how Python
behaves with variables!

Working with lists
One day Python decided to invite friends for dinner. The
fridge and cupboards were empty so he had to go for
shopping. Being forgetful, he, somehow, had to remember
many different things to buy. So he made a list.

Variables, as we saw in previous pages, can hold one piece
of information at a time. For example, the variable

 myfood=“banana”

holds the value (content) “banana” and nothing else.

Pyhton could, of course, use a variable that contains in
quotes all the things he wanted, e.g:

myfood=“banana, strawberry, raspberry”.

 The problem is that he will get
confused: he will be looking

to find ONE box in the
supermarket that has all

this in it.

So, variables are
good, but if we want
to store a lot

of (and different) information, so that we can find each one
separately, we will use lists.

A list has the following form:

>>> mylist=[“banana”,”strawberry”,”ice cream”]

We give a name to the list, as we would give it to the variable
("mylist" list) above. Then we type “=“ to give the contents of
the list. If it will be text (string), we write each object separately
with quotation marks. A list, unlike a variable, has its contents
enclosed in “[]” symbols.

To see the contents of the list, type the command:

>>> print(my list)

[‘banana’, ’cherry’, ’strawberry’]

Each item in a list has its own order: the first
item is at position 0, the second at position 1,
the third at position 2. In the next chapter we
will see the usefulness of the list and the
positions of the objects.

“Lists”, ‘Lists’, Lists!
Ας δούμε τις πιο κάτω λίστες:

mylist=[‘banana’,’icecream’,’strawberry’]

mylist=[“banana”,”icecream”,”strawberry”]

Και στις δύο περιπτώσεις, το αποτέλεσμα είναι το ίδιο: η
λίστα mylist περιέχει τις ίδιες πληροφορίες σε μορφή
string.

Σε περίπτωση που θέλουμε να χρησιμοποιήσουμε
ακέραιους αριθμούς (integers) στη λίστα, θα πρέπει να
έχει την εξής μορφή:

mynewlist=[10,14,23,44]

To show the contents of a list, you don't necessarily need
the print() command. Print() is useful when we want to
display other information along with the

contents of the list.

 We can simply type
the name of the list to display

its contents:

>>> mynewlist
 [10,14,23,44]

If we have two lists, we can join their contents. For
example:

>>> mylist1=[“banana”,”watermelon”]

>>> mylist2=[“apple”,”cherry”]

>>> mylist2=mylist2+mylist1

In the last command, we put the contents of mylist2
together with the contents of mylist1. If we type mylist2, we
get the following:

>>> mylist2
[‘apple’, ‘cherry’, ’banana’, ‘watermelon’]

We can add content to a list with the “+” sign
and the items inside []. For example:

>>> mylist2=mylist2+[“mango”]

The word mango will be added to the end of
our list.

Decisions…
Pythons are intelligent animals. A python wanted to
upgrade his computer. He wanted to see if his memory was
more than 8GB. He thought "IF (the computer's) memory is
less than 8GB, I'll upgrade it". Before making the decision
to upgrade his computer's memory, he should first check if
it was less than 8GB (and, you know, with less than that, you
don't run fast Windows 11 or MacOS X or new versions of
Linux).

How would we test this (almost) with pseudocode:

"If the memory (of the computer) < 8GB upgrade memory"

So, first we will check if our memory is smaller (using the
“<” symbol) than 8GB. If this is the case, then and only
then will we upgrade the computer's memory.

At this point we are going to use a variable (mymemory) to
which we 'll give the value 8. Let's see how our computer
will check it.

Lets write the next code:

>>> mymemory=8

We have created a variable to which we give the value 8
(our computer's memory in GB).

>>> if mymemory<8: print(“You need to upgrade
your memory”)

The new “if” command asks us to check if a condition is
true. In this case, we ask it to check IF the value of the
variable is less than 8. If it is less than 8, then the message
Upgrade memory will be displayed.

In the example above, we only used one condition
(memory<8). So we only used one line for the condition
code.

Usually in conditions we follow the following structure:

mymemory=8
if mymemory<8:

print(“You need to upgrade your
memory”)

The result is of course the same, since we again have only
one condition to check. Then we will see other examples.

Until now, we checked a number and returned only one
response if the condition was true. But if it is not the case,
why not give some information? Here we will use the “else”
command.

Let's issue the following command:

print(“Your memory needs upgrade”) if
mymemory<8 else print(“No need to upgrade”)

In the example above, we followed a different syntax. In
one line we request that the message appear on the screen
Your memory needs upgrade IF the value of mymemory is
less than 8, ELSE display the message No need to
upgrade.

We will study the conditions in the next chapter,
in greater depth.

It's important to understand that our examples so
far have involved executing one command at a

time. Later we will learn how to create a complex
program consisting of many lines of code.

In the previous pages, we got to know the “if” command
and studied some simple examples. It is important to see,
next, how we can use this command for more complex
comparisons.

We will initially start with two variables:

number1=10
number2=20

We assigned different values to these two variables.

We want to compare the contents of the two variables to
see if they are the same.

if number1 == number2: print (“Equal”)

With the above command, we check if their content is the
same. This is achieved with the double “=” sign. In the
above example, the condition does not apply, so no
message will be displayed.

If what we are interested in is checking if their value is
different, then we use the command:

if number1 != number2: print (“Equal”)

Checks we can do:

• One variable is less than another:
number1 < number2

• One variable is greater than another:
number1 > number2

• One variable is less than or equal to another:
number1 <= number2

• One variable is greater than or equal to another:
number1 >= number2

For comparisons, we can also use And, Or and Not.

if number1=100 and number2=100:
print(“Equal”)

In the command above we check if both conditions apply
(both one number and the other are equal).

If number1=100 or number2=100: print(“One hundred”)

In the command above, we check if even one of the two is
equal to 100.

What have we learned
so far?
• In this chapter we have learned general information

about programming languages and focused on Python.

• With the print() command we can display text and result
of operations and variables on the screen. The text must
be in quotation marks “ “.

• Mathematical operations (e.g. 5+7) are performed
automatically by pressing ENTER without using print().

• Variables can be used to store characters (strings),
integers (integers) and decimals (floats).

• We used lists and learned their differences in relation to
variables.

• With if command we can check whether a condition is
true or not.

Activities
1. What is the result of running the code below?

number1=10

number2=5

name=input("What's your name?")

print("Welcome",name)

number=5

print("The addition of the two numbers

is", number1+number)

2. In the code below

(a) tick the information that is not necessary,

(b) list the result of its execution:

numb1=10

numb2=4

numb3=2

numb4=8

#Operations using the above variables

print(“The result

is”,numb1+numb3+numb3*2)

3. The program below must add the values of the three
variables and display their result.

(a) Fill in the missing code.

(b) Write the result of running the code.

print(“Addition of the integers”)

a=20

b=15

c=30

print

4. Correct the code below. Then write the result of its

execution.

number1=5

number2=2

print(“The addition is, number1+number2)

print(The multiplication is number1*number)

3. “Many many commands”

10 | print (“Who in the world am I?”)

20 | print (“Ah, that’s the great puzzle!”)

30 | #Alice in Wonderland

Program…

Pythons are quite intelligent animals, as we have
mentioned in the previous chapters! So far, we've worked
with one command at a time. Pythons, however, can work
with multiple commands. In this way we can create
complex programs, which, however, perform many
different tasks.

In this chapter we will learn new commands, which we will
combine to create our first program.

• In Unit 3 “Many many commands” we are going to
work with multi-line code.

• We will use print() to display multiple lines of
information on the screen at once.

• With the command input() we will give a value to a
variable from the keyboard.

• With if...else we will check if a condition is true (e.g. 10
> 5) so that our program can "decide" the course of a
simple game.

• With type() we will display the type of a variable.

• With the help of int(input()) we will enter data from the
keyboard as an integer.

What we are going to learn:

Until now, we wrote and executed one command at a time.
This is useful, but it doesn't help us when we want to create
a complex application.

In the above example, we calculated the square of 5 (or 5
to the second power).

To be able to write a program (a series of
commands) in Python, we can even use simple
text editors! Notepad on Windows or
SimpleText on MacOS are enough to write the
code.

To create a program with several lines of code, we use
code editing software (Editors). IDLE includes its own
Editor. From IDLE's File menu, select New File (top right
image).

We immediately notice the differences between the new
window in which we will write a series of commands (top
right) and the IDLE window we worked with in the previous
chapters.

On the next page we will create our program and learn
about new commands.

Python Files
Before we start adding commands, it's a good idea to save
our file. From the File menu, select Save Us…

We name our program “myfirstpython.py” and save it. We
have already taken a huge step in Python.

Python files have a .py extension, Our first file is
named myfirstpython.py. It's a good idea to give
our files names that tell us exactly what the
program does.

Alternatively…
In addition to Python IDLE, we can use other applications,
which give other features (for example, support for many
programming languages).

There are a lot of software that can serve us. On MacOS, a
good choice is BBEDIT. On Windows, a good choice is
Notepad++ (image below). Both are free and we can
download them from our computer's App Store or from
their websites.

About Notepad++
If you want to try something different, you can write code in
Notepad++, a great free Windows application.

Upon starting Notepad++, general information about the
downloaded program is displayed. We are interested in
"showing" Notepad++ that we want to program in Python.

When we set Python as the primary language, then the
corresponding coloring appears in the commands.

From the Language menu, select Python (from the letter
“P”), as shown in the image above.

To create a new file, from the File menu, select New
(picture on the top right).

Notepad++ is (also) used by schoolchildren
and students, as it is free and offers great
flexibility with support for many programming
languages.

Let’s Run!

We have written our first command. Unlike previous
examples, with line break, it is not executed. From the Run
menu we should select “Run Module”.

Our program "runs" and its result is displayed (the
message 'Welcome to the program 'Find my age').

With the 'Run' command, our Python program
(which we understand) is "translated" into the
language that pythons (ok... computers)
understand. This happens every time we select
'Run'

In the following pages we will enrich our program with new
commands.

We have added 4 print command lines. In the first and
fourth lines, we use the “*” symbol to show a box above
and below our text (image above right).

Line 2 and 3 of our code (image above) gives us
information about the program. In line 2 it gives us the
name of the game, while in line 3 it explains what our
purpose is.

The "*" symbol can be used in conjunction with
the print() command to create shapes on the
screen. We will create shapes in a later chapter
of this book.

Next, we'll add some more code.

print()
print()
print(“How many years does a python live?”)

The two print() lines we have added leave two blank lines
between the introductory part of the program and the
query we asked.

Next, we'll show how to give input with
the keyboard.

Input data
So far, we've managed to write 7 lines of code. But our
program does not allow us to give the age a python might
be. To give input from the keyboard, we should use a new
command, input.

age=input()

Let's look at the above command: "age" is a variable. In
this variable we will store the age (number) that we will
give from the keyboard.

"input" is the command with which Python expects us to
provide some information with the keyboard. As soon as
we press the ENTER key, the information we typed
(number, text) is stored in the “age” variable.

print(“How many years does a python
live?”)

age=input()

H μεταβλητή πιο πάνω δεν έχει τη σωστή
μορφή! Αυτό θα το εξηγήσουμε αργότερα,
όταν θα μιλήσουμε για αλφαριθμητικές τιμές
και για ακέραιους!

When we run the above program, the print message
appears ("How many years does a python live?") and the
computer expects us to type some information. Press
ENTER to complete the process.

To make our program more interesting, we add one more
command:

print(“It lives to”,age)

The above command displays on the screen the message
"It lives to " followed by the number we entered with the
keyboard (and stored in the "age" variable).

Then we will improve the code even more, using other
commands.

Let's look at the input() command again:

print("How many years does a python
live?")

age=input()

In the above example we used two commands. print()
gives us the message that explains what to type. In the
second command, with input() we ask someone to type a
number. The number is stored in the age variable.

We could replace the two above with one command, which
does exactly the same thing:

 age=input(“How many years does a python live?”)

Within the brackets of input() we have typed the same text
we previously had added to the print() command.

In the example above, the number entry point is to the
right of the text (image lower left).

We can modify the input() command so that we type the
number in the next line:

age=input(“How many years does a python live?\n”)

The addition of \n transfers the information we will give
from the keyboard to the next line (image below).

On the next page we will see other uses of the input()
command.

Our beloved python can type text in addition to numbers.

 name=input(“Player's name”)
 print(“Welcome”,name)

In the first command, we ask the player to write his or her
name. The name will be stored in the name variable.

With the print command, the message “Welcome” is
printed and then the content of the name variable (image
below).

A bit of grammar: when we type our name, it's
in the nominative case. When the computer
displays it, it continues to remain in the
nominative, even though it should be in the
vocative.

The input() command can be used to enter
numbers with which to perform mathematical
operations.

We can also use input() to select (multiple
selection). And we will see this later in our book!

Let's comment…
Pythons are meticulous and "commentative" animals. They
like to put notes in their texts. This helps them understand
what each paragraph or section of text says. The same
when writing computer programs.

Comments help to better understand what a program does
and/or parts of a program.

To write a comment, we have to -somehow- tell Python that
it is not a command to be executed, and simply ignore it.

In the example above, the print() command is shown in red.
We have put the "#" symbol in front of it. This symbol, at
the beginning of the command, tells Python to ignore it in
execution because it is a comment.

In the image below we see the comments at the beginning
of a line (they explain what the code does) but also to the
right of a command (they explain what the command
does).

Τίτλος

The decisive python!
Time for the friendly green python to decide if we got his
age right! We should - you guessed it - use the “if”
command. A python lives about 10 years.

if age==10:
print(“You have found the correct

age!”)

On the first line, we compare the value of the variable age
(given by the keyboard) to the number 10 (the number of
years a python lives).

In comparison, we have the double symbol == which
indicates “equal to”. We also use “greater than or equal to”
(>=), “less than or equal to” (<=) and “less than/greater
than”.

IF the condition is true (the number we gave is 10), THEN
the message “You found the correct age” is displayed.

The print() command appears below and to the
right of the if. All statements executed IF the
condition is true must be below the if and
indented.

However, we want it to display a message when we enter a
different number. We should also add 'else'.

if age==10:
print(“You have found the correct

age!”)
else:

print(“Unfortunately you were
wrong!”)

IF the value of the variable age is 10, THEN it will display
the first message, ELSE it will display the second message.

We can write these commands in one line:

print(“Correct!”) if age==10 else print(“Wrong answer!”)

In the image below, we see the result of the program, when
we give the wrong answer. On the next page we will learn
how we can continue the game and give an answer again.

Code error!
On the previous page, we saw the message that our
program outputs if we give the wrong number for the age
of the python. But what happens when we give the right
number?

As we can see in the image above, even though we type
the correct answer (which is 10), it considers it wrong! But
why; since our code is correct. Or is something wrong…?

Integers and oranges…
On a previous page, we talked about types of variables.
Some variables, the values they take are whole numbers
(integers or int). Others are text (which can also contain or

consist of numbers) and are called strings. Others accept
decimals (floating point or float).

If we want to know what type a variable is, we use type().

In our code we have the variable age, to which we give a
value from the keyboard.

 age=input(“How many years does a python live?\n”)

We then compare this variable to see if it equals the
number 10.

 if age==10:

But there's something we didn't notice: when we give
information to input, it automatically puts it in the variable
not as an integer (int) but as a text (str)!

So, whatever number we give to the input from the
keyboard, it will consider it to be text and not a number
and therefore the comparison will always be wrong (as if
we tell it to compare whether oranges are the number 10)!
Then we'll see how to fix it.

Variable type
We want to give a number from the keyboard so it can
compare it to the python's age and see if we got the right
answer or not.

The question is: how do we tell Python that the number we
want to return is an integer and not text? First of all, let's
see how we detect the type of a variable…

We will use a new command, type() to check the type of a
variable. To display the type of the variable on the screen,
we'll type it inside print(). Let's look at the example below:

x=10 #in variable x we give 10 as a number
y=“10” #in variable x we give 10 as a text
print(type(x))
print(type(y))

type(x) finds the type of variable x. But to display its
contents on the screen, we need to put it inside print(). The
same for the variable y. We run the program to see the
result:

The first variable (x=10) is recognized as an integer (<class
'int'>). The second variable, although it contains the
number 10, because it is in quotation marks (y=“10”), is
recognized as text (algorithm - str), which is why the
message <class 'str' appears on the second line (image
above) '>.

Variables of type str (string) are used to enter
text, but can also include numbers (or only
numbers), but also symbols. That is why it is
called "string".

Next we will solve the problem of entering a number as an
integer from the keyboard.

Variable as Integer
If we try to give a number from the keyboard, with input(), it
will be recognized as text (alpharethmetic) and not as an
integer (note: the same applies to decimals).

Let's see the command with which we give information
with the keyboard, in the age variable.

age=input(“Please give a number.”)

We will make a change to the above code so that the value
of the age variable is an integer:

age=int(input(“Please give a number.”))

The above change to the input() command solves the
problem, as we are telling Python that we will be inputting
a number (integer) from the keyboard.

Add the double brackets at the end of the
command above. This is required since input()
will be placed within int().

 int(input(“Enter number”))

The correct code with the change is:

If we now try to run the program, we will see how it
recognizes 10 as the correct answer.

"Bugs" in the code!
Pythons, when translating from one language to another,
prefer to do it sentence by sentence. Others prefer to take
the text (or what a speaker has to say) and translate it in its
entirety.

This has both advantages and disadvantages (which we will
not go into in this book). But as Python "runs" a program, it
executes the commands in sequence.

The term "bug" has been used since 1843
and is said to have been coined by Thomas
Edison, the famous inventor. In 1947, it was
used by Gray Hopper, due to a moth causing
a short circuit in the Mark 2 computer.

In the image (left) we see that there is an error in the fourth
line: the text is not enclosed in quotation marks.

When running the program, Python will immediately inform
us of the particular error and indicate the line it is on.

The error above is syntactic, because some characters are
missing or misplaced. Then we will see other mistakes.

Let's look at a more "serious" mistake. We will create a
simple program to calculate the product of two numbers:

print("Product calculation")

number1=input("Type a number: ”)

number2=int(input(“Type a second number: "))

print("The product is ", number1*number2)

There is no "error" in the above code. During its execution,
it will indeed ask us to enter 2 numbers from the keyboard.
Each number will go into a variable (number1 and
number2).

When we run the program, the first 3 lines will be executed
normally:

We have given 2 numbers from the keyboard. When we
press the ENTER key to proceed with the execution of the
last command, the following result appears:

If we run it again, even with the same numbers (4 and 2),
we will see how an incorrect result is obtained. The reason
is simple: the first variable takes an “algebraic” value and
not an integer! We should change it to:

number1=int(input(“Type a number:”).

With this change, the number we will give to this variable
will be recognized by our code as an integer.

What have we learned
so far?
• In chapter 3 we worked with several lines of code and

created a simple game.

• With the print() commands we can display several lines of
information on the screen at the same time.

• Variables are used to store values (text, integer,
decimal...) which we use in the code, usually for
comparison purposes, mathematical operations, etc.

• With the input() command we can give a value to a
variable from the keyboard.

• With the command if…else we can check if a condition is
true (e.g. 10 > 5).

• With type() we can determine the type of the variable.

• With int(input()) we input a value as an integer.

Activities
1. What is the result of running the code below? Try

writing it without running it on the computer.

name=input(“Please write your first name")

surname=input(“Please write your last name”)

print(“Welcome”,name, surname)

2. What will be displayed on the screen when the code

below is executed? Write it without running it on the

computer.

print(“**************************”)

print(“* Calculating powers *”)

print(“**************************”)

print()

base=int(input(“Please give a number”))

power=int(input(“Please give the power”))

print(“The”,base,”on the power of”,power,”equals

to”,base**power)

Δραστηριότητες
3. Write a program that prompts the keyboard for a

number from 1-10. Then display the multiplication table
of that number.

4. Write a program to request the "code" from the
keyboard. If the password is correct ("mypassword"),
the message "Very correct" should be displayed.
Otherwise, it will give you the message "you made a
mistake" and stop.

5. Correct the code below so that the program works
correctly.

@Calculation of the product between 2

numbers

print(Welcome to our program)

number1=input(“Type the first number”)

number2=input(“Type the second number”)

print(“Their product is”,number1*Number2)

4. Repetitions…

10 | print (“It takes all the running you can do,

20 | to keep in the same place. If you want to get

30 | somewhere else, you must run at least

40 | twice as fast as that!”)

50 | #Alice in Wonderland

Repetitions

When we write programs, we often need to repeat some
commands. For example, in the game "Guess the number
I'm thinking", we should give 2 or even 3 chances to
someone to find it.

One way is to write all the commands 3 times. Another way
is, with some commands, to repeat their execution 3 (or
more) times.

Loops are particularly useful because they allow us to
create complex programs without having to repeat the
same commands over and over (in some cases this will be
necessary).

In Unit 4 "Repetitions…” we will learn the advantages of
using loops to execute repeated commands. It will also:

• Let's learn while() and use it in conjunction with if().

• We use variables to control the number of iterations.

• We will learn and use the for loop in conjunction with
range().

• We perform iterations with a certain range of numbers.

• We perform repetitions to create shapes and to
calculate the product of numbers.

What we are going to learn:

The iterative Python!
Pythons are particularly stubborn animals - they can do
something over and over until it's done right or until they
get bored - whichever comes first!

In the previous section, we created a simple age of python
game. Our game, if we give a wrong answer, it will be over!
But we want to be able to continue until we give the right
answer (or, at least, give 2 or 3 answers before it ends).

These commands are called "loops". There are different
types of repeat commands that we can use. For our game,
we will use the while command.

What we want is for the game to continue until we enter
the number 10 from the keyboard.

Let's look at the
command:

 while age!=10:

In the command above, as long as the value we type is
different from 10, the program will continue to execute the
commands:

age=input(“How many years does a python live?\n”)

This command is necessary so that it continues to ask us to
enter another number.

if age==10:

print(“Correct!”)

else:

print(“Wrong”)

Before the while command, we should give an
initial value to the variable we will use. This value
should not be the same as the one it controls
(eg anything other than 10).

Next we will study other examples of repetitions.

In the previous example, we saw how to return Python's
age over and over again until we found the correct result.
This can take hours (or even days!) if we don't set a limit.

We're going to change our code a bit so that it stops
asking for a number after 3 tries.

We start with a new variable, which we will use as a
“counter”:

count=1

With the above variable, we will measure our efforts (and
therefore, how many repetitions we will do).

while count<3:

With the above change to while, the iteration will continue
as long as the value of the count variable is less than 3.

age=input(“How many years does a python live?
\n”)
print(“Correct!”) if age==10 else
print(“Wrong!”)

With the above commands, we get a value from the
keyboard, which will be stored in the age variable. In the

next line, a check is made as to whether age has the value
10.

Here we need to add one more line: after the if check, we
need to increase the value of count by 1. This is important,
because we said that it will only be repeated 3 times. The
code is:

 count=count+1

In programming, commands are read from right
to left. The above command reads as “add 1 to
the value count already has, and store the new
content in the same variable (count).

The change in the count value can also be written
differently:

count+=1

It seems a bit strange, but we read it like this: “to the value
of count, you should add 1”.

But here we have a problem: if we run our program, it
terminates in two attempts.

On the previous page, we saw the repetition of our
commands. But instead of 3 repetitions, there were only 2!
To solve this "mystery".

count=1
while count<3:
 count=count+1

Initially count has the value 1

while checks if count is less than 3. Since it is (count=1), it
moves on to the next statement (count=count+1). Now the
count is 2. This is the first iteration.

The while again checks if count is less than 3. As we saw,
count=2, so it continues executing the statements. The next
command tells count to increase its value by 1. Since count
was 2, it will now be 3 (count=2+1). This is the second
iteration.

Count has the value 3 now. In the while check (whether the
count is less than 3), we see that it is no longer valid. And it
stops working on the second iteration.

For our program to work as we want (give us at least 3
attempts) we should make the following change:

count=0 (start counting from 0 not from 1)
while count<3:

count=count+1

This is a solution. Another solution is to keep 1 as the initial
value of count and simply increment the value in the check.

count=1
while count<4:

count=count+1

Except… there's one more problem with our code (you
might have guessed it already).

On the next page we will make one more change to the
code so that the program works properly.

Breaking Good!
In the code above, the loop continues for 3 tries. But even
if we get the age right the first time, it will continue for 2
more!

This is easily fixed with the break statement and some
changes to the if condition.

count=1 #initial value of count
while count<4: #repetitions start

age=int(input(“How many years does a python
live?”)

if age==10:
print(“Correct answer!”)
break #σταματά η εκτέλεση της while

else:
print(“Wrong answer!”)

count=count+1 #repetitions end

The image shows the entire code we wrote! We have
created a simple game, with 18 lines of code, in which we
used variables, repetition (while), comments and a
condition to check the value of the variable (If…else).

In the image above, we see that we have left a
space in rows 8 and 19. These spaces are ignored
by Python when executing the commands. They
are useful for making the code readable.

One, Two, Three, For!
For repetitions, we can also use the For command.

We will create a new game, in which you will have to guess
a number that the computer "thinks"! We will use the loop,
as well as the range() function.

range() is an important function. It helps us to use a range
of values (from one number to another).

Let's look at the commands:

for counter in range(3):
print(counter)

Let's look at the commands:

Counter is a variable. With the range(3) function, the
variable takes values from 0 (which is the initial value) to 2.
The number 3 tells us, that is, to take 3 numbers in a row,
BUT the first one is 0 (so the numbers are 0, 1 and 2).

The for statement will execute the program 3 times. On the
first run, it will print the number 0 on the screen, on the
second run, the number 1, and on the third run, the
number 2.

0
1
2

Let's look at an example of using for to display a
multiplication table:

 for counter in range(1, 13):

In the line above, we set the range to be from 1 to 13. If we
put range(13), then it would start from 0 to 12. We want it
to start from 1 to 12. We also add the following command :

print(8*counter) #Array of 8 will appear

While… or…
Next we will learn how to repeat within another iteration.
This is called a "nested loop" or "nesting" of repetition.

Let's look at using while() to create a program to calculate
all the multiplication tables, from 1-12:

print("*******************************")
print("* Multiplication tables *")
print("*******************************")
print()

With the above commands we give information on the
screen about what the program will do. Then we will ask
the user to select the multiplication table:

myArray=int(input(“Select an array from 1-12”))

We want to limit the selection from 1-12. We will use while()
to check if the number given to us by the keyboard is from
1-12. We want a double check: if they give us a number
less than 1 (eg 1) it should output a message that we have
to give a bigger one. If they give us a number greater than
12, then it should output a message that we must give a
smaller number.

If we used the “if” by itself, it would do the check, but it
would only be done once (no repetition). Let's look at an
example with while:

while myArray<1:

The above line constantly checks if the value we give to the
variable “myArray” is less than 1. If it finds that the value we
give is less than 1, then it displays the command below:

pinakas=int(input("Please give a number
larger than or equal to 1”))

The above is very important, because it will keep showing it
until we give a number greater than 1! It also displays the
message about what number it expects us to give it.

It is very important to give information about
what information we want from the keyboard.
So it is important to inform (above) that we
need to give a number greater than 1 to
continue.

The commands we have given so far tell us what the
program does (Multiplication Tables) and asks us to select
the table we want and stores it in the variable “pinakas” as
an integer (int). Then it checks if the number we gave is less
than 1 (because we want it to choose from the array of 1 to
12).

But, it should also check if the number we give is greater
than 12! If we type, for example, 14, it should tell us that
the number must be equal to or less than 12 and ask us to
enter another number.

while myArray>12:
myArray=int(input("Please give a number

equal or biggers than 12”))

With the above command, our program constantly checks
if the number we entered is greater than 12. If it is greater,
then it displays a message asking us to enter a number
equal to or less than 12.

But, there is a problem... If we run the code, we will see that
the check is done, indeed, but only the first time! And it
doesn't check the value we have given at the same time.
Here we should make a change to the code: use while, but

tell it to check whether the number is less than 1 or greater
than 12.

while myArray<1 or pinakas>12:

With the above command, it repeats all those included in
the loop if the number is less than 1 or greater than 12. But
we want it to give us a message so we know what we did
wrong and what number to give. Thus we have the
following conditions:

if myArray<1:
myArray=int(input(“Please type a number

equal or greater than 1”))

With the above commands, if the number we typed is less
than 1, then it will prompt us to give a number equal to or
greater than 1. Then we will check if the number we typed
is greater than 12.

else:
 myArray=int(input(“Please give a number equal
or greater than 12”))

So far, our code asks for a number from the keyboard and
checks if it's between 1 and 12. Next, we'll display the
multiplication table of the number we selected. We will use
a for loop:

for multiplier in range(1,13):
print(myArray,”X”,multiplier,”

=“,myArray*multiplier)

The image above shows the result of executing our code.
We have created a fairly complex program, with a while
loop, a for loop and if conditions. Our completed code
appears below:

Our program, although quite complex,
lacks one basic function: to calculate
another table, we have to run it from the
beginning. Next, we'll see how we modify
the code so that it continues with a new
multiplication table unless we break it! To
do this we need to place iteration inside iteration. This is
called a nested loop.

“Nested” Repetition
next we will learn how to iterate within another iteration. As
we mentioned on the previous page, this is called a
"nested loop" or "nesting" of repetition.

In the previous program, we requested a value from the
keyboard and then the multiplication table was displayed.
But when the table appeared, the program would stop.

Next we will create a program that calculates the matrix of
a number from 1 to 12, and then it will ask us if we want to
continue with another number.

In other words, we should have two repetitions, one
inside the other:

• One iteration will calculate all multiples of our number,
from 1 to 12.

• This iteration will be inside another iteration that will start
the process again, with a new number.

For our example, we will make a simpler program than the
previous one.

print("*******************************")
print("* Multiplication Tables *")
print("*******************************")
print()

x=“y” #we give initial value to x

The variable x is necessary, because with it we will check
whether or not the execution of the program will continue.

while x ==“y”: #checks if x has the value y

The first iteration starts with the above command. It will
repeat all the commands that follow, until we give the letter
'y' from the keyboard.

Next, we give the rest of the commands to calculate the
multiplication table. Inside the while we will have a for
loop.

pinakas=int(input(“Give a number: “))
for multiplier in range(1,13)

print(multiplier*pinakas)

Once the for loop completes, a message to continue is
displayed:

x=input(“Press y and ENTER to continue, any
other key to exit”)

With the above command, the repetition starts again if we
type "y" (and press ENTER) or the program is terminated.
The last remaining command is print(), which will display a
message when we terminate the program.

print(“Thank you!”)

The entire code appears below:

print("*******************************")
print("* Multiplication Tables *")
print("*******************************")
print()

χ=“y” #we give initial value to x

while x ==“y”: #checks if x has the value y
pinakas=int(input(“Give a number: “))
for multiplier in range(1,13)

print(multiplier*pinakas)
x=input(“Press y and ENTER to continue,

any other key
to exit”)

print(“Thank you!”)

With these commands, the program will run continuously
and calculate the multiplication table of the number we

gave. By pressing the “y” key (and ENTER), the process will
start from the beginning, until we press any other key
except “y”.

Our code has a small problem: if we press the
“y” key and we have Caps Lock enabled (or we
hold shift), then it will be typed as capital Y.
Because “y” and “Y” are considered to be
completely different, the answer will not be
recognised!

In the Activities, at the end of this chapter, there is a
related exercise to solve this problem.

• In chapter 4 we learned about while and for loops.

• With the while loop, a series of statements is repeated as
long as a relation holds true (eg x=10).

• With the for loop, we check whether a certain number of
iterations have been done.

• range(0,12) gives us a certain range of numbers.

• In an iteration (loop) we can have another iteration, inside
the first one. This is called "nesting" or nested loop.

What have we learned
so far?

Activities
1. What is the result of running the code below? Try

writing it without running it on the computer.

x=int(input(“Please give a number:”))
for count in range(0,12)

print(“The array of “,x,”is”,x*count)

2. What is the result when the following code is executed;

print(“**************************”)

print(“* Power calculation *”)

print(“**************************”)

print()

x=“y”

while x ==“y”:

 base=int(input(“Please give a number:”))

 power=int(input(“Please give the power:”))

 print(base**power)

x=input(“Press y and then ENTER”)

print(“Thank you!”)

ς
3. Write a program that asks for a distance in meters and

then returns you the centimeters (eg 1 meter = 100
centimeters).

4. Write a program to add 3 numbers. It should ask you
for 3 different numbers and repeat until you press an
exit button (eg “y”).

5. Rewrite the example program of the “Nested” iteration
section. The code should detect whether we pressed
“y” or “Y” and recognize them as the same option.

6. Correct the code below:

print(“* Calculation of difference *”)

x=int(input(“Give a number”

y=int(input(Give another number)

while answer==“y

print(x-y)

answer=input(“Press y to continue)

5. Functions

10 | print (“Have I gone mad?”)

20 | print (“Am afraid so. You’re totally bonkers!

30 | But let me tell you something.

40 | All great people are!”)

50 | #Alice in Wonderland

Functions

This word is definitely unusual… “functions”… something
you will come across in Math in older classes. However,
functions (as they are called in English) are very useful, as
we will see in the following pages.

Functions we have already used in the examples of the
previous chapters.

print() is a function, which displays the content of the
parenthesis on our screen (or other devices).

input() is another function, which asks us to input data
(number, text) from the keyboard.

In the next few pages we'll learn more about functions, and
create our own.

In Unit 5 "Functions" we will get to know the structure of a
function. It will also:

• Let's create our own functions.

• Embed conditions in a function.

• Use loops in a function.

• Let's use functions to create shapes on our screen.

What we are going to learn:

The game of actions
Pythons, as we know, are very good at Maths. They can
remember in every detail even how many grasses and
branches they encountered on their way. For us it is not so
sure, so we will write a program to help us with integer
operations.

In the code above, we explain its basic function with
comments. Then we display informational messages on the
screen with print() and then, with the keyboard, we give 2
numbers:

• one will be the value of the variable number1, and

• the other will be the value of the variable number2.

Next, we will perform the operations with these two
numbers.

print("The sum of the two numbers is",number1+number2)
print("The product of the two numbers
is”,number1*number2)

When we run the program, we will see the following:

Up to this point, our code is no different from what we've
seen so far. Next, we'll modify the commands to create our
first function.

Our first function!
Some commands can be grouped together to do a
specific task. Thus, we have some commands that are only
concerned with calculating the product, while others are
the sum of two numbers.

We will create a group of commands that we will call
“mymultiplications” and a group of commands that we will
call “myadditions”. The names don't necessarily mean
anything, as long as we follow the right rules (as we saw on
previous pages).

The groups of commands we create are called functions.

To create our first function, we first start with the def
command, followed by its name (mymultiplications) and
parentheses:

def mymultiplications():

print(“The product is”,number1*number2)

All commands below the function (with spacing from the
beginning of the line) are part of the function.

If we try to run the program, we will see that nothing
appears. This does not mean that there is a problem with
our code. On the contrary! We will then see how we "call"
the functions!

Functions are like substitute players - they
know their instructions very well, but they wait
patiently for us to call them! If we don't call
them, they are there somewhere, but they
don't do anything.

To call a function, we type its name:

mymultiplications()

The commands contained in the function will be executed
and the result will be shown on the screen.

Choosing between
functions...
Next, we'll use if conditions to choose between functions
to execute. We will give two numbers from the keyboard.
Next, we will choose whether to do addition or
multiplication.

num1=int(input(“Please give a number”))
num2=int(input(“Please give a second number”))

With the above two commands, we enter two numbers
from the keyboard.

def mymultiplication():
print(“The product is”,num1*num2)

With the above function, we calculate the product of the
two numbers.

def sum():
print(“The summary is”,num1+num2)

With the sum() function we calculate the sum of two
numbers.

Next, we'll give options to choose whether we want to add
or subtract:

choice=input(“Please press: a to add, b to
multiply”)

With the above command, type either a or b to select the
type of action to perform.

if choice==“a”:
sum()

if choice==“b”:
mymultiplication()

With the above commands, we can choose whether to call
the condition with which the sum will be calculated or the
condition with which the product of the two numbers will
be calculated.

With the functions we will create complex
geometric shapes, with the help of the "turtle"
module for Python. We will learn more about
functions and geometric shapes in Part C,
“Turtles and Pythons”.

What have we learned
so far?
• In Chapter 5 we learned about functions.

• We created our own function with the def
command.

• We called the function we created inside our
code.

• We combined iterations with our functions.

Activities
1. Try, within a function, calling the same. What do you

think will happen? Try to explain it.

def mymultiplications():

print(“Hello”)

mymultiplications()

mymultiplications()

2. Find the mistakes in the meeting below and
correct it. What will be displayed on the
screen when executed?

def division()

print("The quotient is", 25/5)

divisions()

divisions()

Δραστηριότητες

3. Without running the code below, write the result it will
have on your screen:

print("*******************************")

print("* Calculate the product *")

print("*******************************")

print()

#——-Function—————

def mymultiplications():

print(“The product is”, number1*number2)

#——-End of Fuction—————

number1=int(input(“Give a number”))

number2=int(input(“Give another number”))

mymultiplications() #calling the function

4. Write a program that prompts you for a number and
then chooses whether to (a) display its multiplication table
(up to 12) or display the number to the second power (the
product of itself).

PART C: TURTLES & PYTHONS!

As strange as it sounds, Pythons can draw.

Ok, maybe not the real ones - and we don't want
you to get too close to see for yourself - but the
digital ones for sure. In fact, they borrow the "tools"
from their friends the turtles.

In Part 3 of this book we will deal with the
commands that allow Python to create shapes.
Specifically, we'll use the joint (weird word, right?)
with the commands that allow you to create line
shapes.

Next, we will use these commands to create
geometric shapes.

TURTLE GRAPHICS!

Through Part C "Turtles and Pythons" we will have the
opportunity to:

• Know and introduce the turtle joint.

• Know the basic commands for creating shapes.

• Create our own shapes using repetitions.

• Understand the way in which our turtle "moves" on the
screen.

• Use functions to create complex geometric shapes.

What we are going to learn:

Python Modules
The possibilities of Python are almost limitless. This is (also)
due to the fact that we can use modules to give many new
features to the programs we create, without having to write
complex code. Ok, we're definitely going to write a lot of
code, but let's keep it as simple as possible.

The turtle module
A useful module is turtle. It is based on the LOGO
programming environment created in 1967 to teach math
to children in the US (using a robot turtle).

If you have installed Python using the instructions in this
book, then you also have the turtle module on your
computer.

The logic of LOGO - and in our examples, of Python with
the additional commands - is simple: we give commands
(FORWARD, LEFT, RIGHT, etc.) to a "turtle" on our screen.
The "turtle" moves on the screen and creates designs.
These (geometric) designs can have a different shape
(border), line color, etc. The possibilities offered by the
turtle joint are (almost) limitless, and we will get to know
quite a few of them.

The first thing we need to do is to insert the turtle joint:

from turtle import *

Next we type our first command to create a schema:

forward(100)

The above will create a line with a length of 100 pixels.

We'll get to know more about pixels and shape commands
next.

Pixels!
The screen of every digital device, from the computer to
our mobile phone and smart watch, consists of very small
squares - the pixels (Pixels, from the words Picture
Elements).

Modern screens have so many lines and columns of pixels
(the "resolution" we say...) that we cannot easily distinguish
them. Of course, in earlier times when screens had much
fewer pixels, the squares of the screen looked very clear.
And the graphics were much more 'square'.

When we give the command forward(100), we ask our
"turtle" to move in the direction it is "looking" by 100
pixels.

Each screen has a different resolution. And it doesn't
always depend on its size. For example, an older computer
with a 17'' screen may have a much lower resolution than a
modern laptop with a 14'' screen.

If your tablet or laptop has an HD screen, it
means that it consists of 1920 columns and
1080 rows of pixels. If we want to know
how many pixels that is in t o t a l , we can
u s e o u r c a l c u l a t o r , or pencil and
paper, or P y t h o n i t s e l f .

>>> 1920*1080
2073600

Colors & Lines!
What about the colors? Shapes are good, but we also want
some color in our classrooms, in our neighborhood, in our
books, on our screens!

Before the drawing commands, we can choose a color
(we'll also see how we change colors along the way).

from turtle import *
color(“blue”) #color turns to blue
forward(100)

In the color() command we put in parentheses the color we
want to use in the creation of a shape. For the above
example, we create a blue line 100 pixels long.

Let's try different combinations:

from turtle import *
color(“blue”) #color turns to blue
forward(100)
color(“green”)#color turns to green
forward(100)

We can easily see that changing the color is a relatively
simple process.

Before the command with which the shape will
be created, we also choose the color. We can
choose the color by its name: black, blue, red,
yellow, pink, brown, gold, maroon , etc.

To change the width of the line, we use the width()
command with a number:

 from turtle import *
 color(“blue”) #color turns to blue
 width(5) #width of the line turns to 5
 forward(100)
 right(90)

 forward(100)

Pennies up and down…
If we want to create a line 200px long, we will give the
forward(200) command. However, if we want to create a
series of lines with spaces between them, then we will have
to teach the turtle to "lift" the pen as it goes.

With penup(), we tell our turtle to "pick up" the pen.
Immediately after that follows the movement command, so
that it moves to another position. If we want it to start
writing again, then we give the pendown() command.

from turtle import *
forward(100) #move 100px
penup() #pen is up,so it can't write!
forward(100) #move 100px
pendown() #pen is down, so it can write!
forward(100)

Let's add some color (and repetition) to the
code:

from turtle import *
for counter in range(0, 4):

color(“blue”)
forward(50)
penup()
color(“green”)
forward(30)
pendown()
forward(50)

Pythons & Geometry
With the help of Python we can create all geometric
shapes! Let's see examples:

from turtle import *
forward(100)

We run the program with Run and our first line appears.
Because our turtle (that's what we'll call the arrow) "looks"
to the right, our line is formed in that direction.

Let's create a square: we'll start with two basic commands:
one to move forward (right, as shown by the turtle) and the
other to turn 90 degrees to the right.

from turtle import *
forward(100)
right(90)

In forward(100), the number in parentheses indicates the
“steps” it will take (in pixels). In the right(90) command, the
number in parentheses is the degrees it will turn (to the
right).

from turtle import *
forward(100)
right(90)
forward(100)
right(90)
forward(100)
right(90)
forward(100)
right(90)

On the next page we see the result of executing the above
code.

Our turtle slowly creates the shape, as we see in the image
above.

The code we saw on the previous page creates the square
in the image above. It is important to be able to identify
parts of the code that we could change and/or improve.
For example, we notice that we repeat the commands
forward(100) and right(90) 4 times.

We'll use while() to simplify our code: it should loop 4
times. That is why it is necessary to use a variable x that will
count the repetitions.

If we run the above program, we will see that it creates the
square of the image on the left. The orders have simply
been reduced.

In code, it's important to identify the elements that we can
simplify. It is not always necessary (or even useful) to have
repetitions. But, it is very important, when writing code, to
identify "patterns" that we could simplify.

The square is a special case. It would definitely be harder
with a rectangular shape.

Repeat with For…
In addition to while(), we can also use the for command for
repetition, as we saw in the previous chapter.

from turtle import *
for x in range(0,4):

forward(100)
right(90)

The for command starts with a variable (here we used the
variable x) which takes values from 0 to 4 (range).

It then executes the commands inside the iteration
structure as many times as the range.

We'll use for to create a rectangular shape 100 pixels long
and 50 pixels wide. In the rectangle, because one side is
different from the other, we cannot repeat the same pair of
commands 4 times. We will repeat 2 times, two pairs:

for x in range(0,2):
forward(100)
right(90)
forward(50)
right(90)

In almost every shape we can spot patterns
for using repeats. Many times we may find it
difficult to identify the pattern from the
beginning. We can write - even on paper -
the commands that our program will
execute, so that we can find the pattern (if it exists) and use
repetition.

Running in circles
We will create a circle. Necessarily we should use
repetition.

from turtle import *
for x in range(0,180):

forward(5)
right(2)

A circle has 360 degrees. In the range we gave a maximum
value of 180. In the turn, we gave the command to go right
2 degrees. To close the circle, the product of the value in
the range (180) with the value in the right (or left) must
equal 360. (180X2=360).

What if we change the forward? From 5 we double it to 10.

from turtle import *
for x in range(0,180):

forward(10) #increased from 5
right(2)

Our circle has doubled (circumference). In a similar way we
can play with the rest of the
parameters (eg the range to
be 90 and the turn to be 4
degrees). We can also make a
left turn instead of a right
turn.

To create a circle, we can use the -you guessed it- the
function named circle(). The number in the
brackets is the size of the radius.

from turtle import *
circle(10)

Type of angles
The opening of the corners is measured in degrees. Angles
are measured with a special tool, the protractor.
Depending on their opening, we divide them into different
groups. For example, angles with an opening greater than
0° and less than 90° are called acute (images below).

Supplementary &
Complementary angles
A 90° angle is called a "right angle." A 180° angle is called
a "straight angle." If you have an angle of 30° and you want
to combine it with another angle to make a total of 90°, the
other angle must have a measure of 60°.

These two angles, whose measures add up to 90° (making
a right angle), are called "supplementary angles."

Two angles whose sum is 180° (a straight angle) are called
complementary angles.

90°

60°

135°

180° 360°

45°

Acute angle

Right angle Obtuse angle

Straight angle

Acute angle

Complete angle

30°

60°
45°

45°

135°45° 90°90°

Create a triangle
To create triangles with Python, we should have an
understanding of the types of angles and especially
supplementary and non-supplementary angles.

Let's look at the following example: we want to create an
equilateral triangle, with the length of each side 100px
(pixels). An equilateral triangle has all its angles equal (60°).

With the command below, we create the base (lower side)
of the triangle:

from turtle import *
forward(100)

Since our turtle always faces right, we'll see this appear:

As we said at the beginning, in an equilateral triangle, each
angle has a span of 60°. If we try issuing the command
left(60) and then forward(100), we will see the following:

Our angle is completely wrong (or, to be precise, not the
one we wanted). And it's not even 60°, it's 120°. The reason
is simple: Our turtle was "looking" to the right. When we
told her to turn 60° left, she did! In fact, two angles
(complementary) were created.

60°120°

Initial course of the turtle

Left turn, 60°

New course of the turtle

In the example on the previous page, we see the error in
the turn - our turtle is not "smart" enough to understand
that we want to construct a triangle.

The "secret" is to always think with complementary (and in
some cases complementary) angles: "How many degrees
must the turtle turn, so that the angle that will be formed
internally will be the one we expect?"

In the case of our triangle, we want the angle (inside) to be
60°, so we should turn left 120°, which is its supplementary
angle.

The code for the equilateral triangle is:

 from turtle import *
forward(100)
left(120)
forward(100)
left(120)
forward(100)
left(120)

The forward() and left() commands are repeated 3 times.
We can use an iteration:

from turtle import *
for x in range(0,3):

forward(100)
left(120)

60°

60° 60° 120°

120°

120°

Turtle position on the screen
The computer screen consists of rows and columns of
pixels, as we saw on the previous page (“Pixels”).

Our "turtle" always appears in the center of the screen (of
the window to be precise) and "looks" to the right. This
position is called "home". It also has the coordinates (0,0).

If we want to see, at any time, the position of the turtle, we
use the command below:

print(pos())

The information will not appear in the graphics display
window, but in the Python IDLE window (image below).

With home(), we send our turtle to its original position!
Please note! It will not just appear there, it will draw a line
all the way to its initial position!

forward(100) #draws line right, 100px
right(90) #turn right 90°
forward(100) #draws line down, 100px

This can be used cleverly to actually create lines, like the
triangle we see below:.

Move on the screen
With the command setpos() we can send our turtle to any
part of the screen we want. We should remember that
setpos() needs two pieces of information (numbers): the
first number refers to the row we are in, and the second to
the column. The starting position is always (0,0).

If we want to "send" our turtle to a different location, then
we use the command:

setpos(0,50)

Our turtle moved up 50px, but also drew a line while
moving.

If we don't want a line to
be created while moving,
then we also use the
penup() and pendown()
commands.

Let's look at an example:

#from the position
(0,0) it draws line 100px to the right
forward(100)
penup() #the pen stops writing
setpos(0,50) #the pen moves 50px above the original
position
pendown() #the pen starts writing
#from the position (0,50) it draws line 100px to
the right
forward(100)

The turtle starts
from the point

(0,0)

This point is
(60,0)

This point is
(-80,0)

This point is
(0,-50)

This point is
(0.60)

This point is
(60,40)

Repeating patterns!
On a previous page, we used repetition to create
quadrilaterals. In the specific examples, we simplified the
commands (reduced the square creation commands by 6).

Next we'll use iterations to create a number of shapes that
will resize automatically.

from turtle import *
for x in range(10,110):

circle(x)

With this repetition, circles will be created with a radius
from 10 to 110 pixels, with the use of range().

The repetition continues, with values taken by the x
variable (from 10 to 110). But it only increases by 1 radius
each time.

We will give the range() one more parameter. The first
number (10) indicates
which radius to start
with. The second
number (110) shows
where to stop. The
third number (20)
shows how much to
increase the radius
each time.

Repetitions & colors
We have created a series of circles, which start from the
same point (previous page). But they all have the same
color. We will use nested iterations to change the color of
each circle each time.

from turtle import *
x=10 #initial value of the radius
while x<200:

for y in (“red”,”green”,”blue”):
circle(x) #forms a circle of radius x
color(y) #changes color every time

x=x+10 #radius increases by 10

In our example we have repetition within repetition. With
for y in ("red", "green", "blue"): we repeat the commands it
includes 3 times, until all three colors of the parenthesis are
used.

The command circle(x) will create a circle with radius x (in
the second line, we set the initial radius to 10). The color(y)
command changes the color each time it is repeated (red,
then green, then blue).

The command x=x+10 is necessary so that the radius
changes in each repetition, otherwise each circle will be
formed on top of the previous one!

The iteration continues until x becomes 200 (while<200).

We can experiment with the commands and
see how the shape changes. For example, we
can change the last line to x=x+30. Also, we
can add colors (yellow, orange, brown, pink, etc.).

Let's fill with color!
Until now, the shapes we created were colorless inside (or,
better, white). We can give color to the inside of a shape,
after first - as is logical - creating it.

from turtle import *
circle(50)

With the above commands, a circle with a radius of 50
pixels and a white fill color will be created.

To fill a shape, we must first choose the color to use. This
can be done with the fillcolor() command and the color in
parentheses:

fillcolor(‘red’)

Colors can be selected from a wide range of
shades. In this guide we will use the basic
colors (red, blue, yellow, green, etc.) and not
their shades.

Because it is possible to have several shapes in a program,
with different colors, it is very important to "tell" Python,
from which shape to start the filling, and at what point to
stop.

from turtle import *
fillcolor(‘red’) #we choose a color
begin_fill() #from this point the filling starts
circle(50)
end_fill() #at this point the filling stops

Shapes & Functions
Once we understand how the turtle moves on the screen,
we can create complex shapes. Let's see how we could
create a tree: for its trunk we will draw a rectangle, and for
the foliage, a circle.

from turtle import *

fillcolor(“brown”)#the color is set to brown
begin_fill() #the filling starts
for x in range(0,2):

forward(50)
right(90)
forward(100)
right(90)

end_fill()#the filling is completing

The rectangle we created is the trunk of the tree, so we
have added brown color to its interior. Next we will also
create the upper part of the tree (circle with green fill).

We want the foliage to appear from the middle of the
upper side of the rectangle (top right image).

We give the command “forward(25)” to go to the middle
of the line, and then we create the circle (filled with green
color):

forward(25)
fillcolor(“green”)
begin_fill()
circle(50)
end_fill()

So… how about we use a function to create a row of trees?

The turtle is here

Side length is
50px

All the code we saw on the previous page allows us to
create a tree. We will integrate the code into a function, so
that we call it every time we want to "plant" a tree.

from turtle import *

def mytree()
#commands to create the trunk
fillcolor(“brown”)#brown color is chosen
begin_fill() #color filling starts
for x in range(0,2):

forward(50)
right(90)
forward(100)
right(90)

end_fill()#color filling stops

#commands for generating the foliage
forward(25)
fillcolor(“green”)
begin_fill()
circle(50) #size of the foliage
end_fill()

All of the above are the commands that are (now)
contained in the mytree() function.

Next, we'll "plant" a series of trees on our screen with code.

We add the commands:
for x in range(0,3)

mytree()

With the above commands, we
call the mytree() function 3 times
to create 3 trees. If we modify
range(0,3) and instead of 3 we put 5,
then the function will be repeated 5 times.

The little trees are created, but they are stuck to each other.
We need to make one more change to our code so that
they appear spaced apart.

The function we created helped us draw 3 trees in a row
(previous page). But these are linked together. We'll use
the forward (100) command to keep the distance (you can
resize it however you like).

for x in range(0,3)

mytree() #call of the funtion

forward(100) #keep the distance 100px

We have kept a distance between the trees, but in moving
the turtle he has also drawn a line from one to the other!
Easily fixed with the penup() and pendown() commands.

for x in range(0,3)
mytree() #call of the function
penup()
forward(100) #keep the distance 100px
pendown()

Our trees appear in order. If
we want to experiment, we
can also add a sun.

penup()
setpos(0,150)
pendown
fillcolor(“yellow”)
begin_fill()
circle(50)
end_fill()

What have we learned
so far?
• In Part C' "Turtles and Pythons" we worked

with additional commands to create geometric
shapes.

• We introduced and used the “turtle” feature that
allows Python to create geometric shapes.

• We learned how our turtle moves on the screen,
starting at (0,0) (“home” position).

• We used movement commands (forward, left,
right etc.) to move the turtle and make shapes.

• We leveraged iterations to simplify our code.

• We have created a condition for building
complex shapes.

Activities
1. Write a code to create 4 squares of different sizes, one

inside the other, as in the figure:

2. Change the code below so that each circle has a
different color:

from turtle import *
x=10 #initial value of the radius
while x<200:
for y in (“red”,”green”,”blue”):

circle(x) #initial value of the radius
color(y) #it changes color every time
x=x+10 #radius increases by 10

Δραστηρ

ιότητες
3. Draw the shape that will appear when you run the

program below:
from turtle import *
y=20
for k in range(0,4):
 for x in range(0,4):
 color(“blue”)
 circle(y)
 y=y+20

4. Write the code that creates a house, as shown at the
image below:

MINI CV
I was born in Nicosia, Christmas Eve 1974. I got my first

computer in 1988, an Atari 520STFM. I started
programming almost the same year, with Metacomco
BASIC and later with STOS BASIC. I started my studies

as an Electrical Engineer at the Higher Institute of
Technology, but I started my studies again at the

Pedagogical Department of the University of Cyprus.
During my studies I acquired my first Macintosh and -

with my own loans - Hypercard 2.2 and later
Macromedia Director 3.0 studio. I continued my studies

with a master's degree in Analytical Programs and
Teaching (2007) and a PhD in Information Systems and

Communications (2017).
As a teacher, I have been working in schools since 1999,
with the exception of the period 2009 - 2011 when I was

seconded to the Pedagogical Institute. My interests
include online learning environments as well as

computer history. With my childhood friend Nikolas
Ktenas, we founded in 2014 the first Computer Museum

in Cyprus.

Alexandros Kofteros, PhD
alexandros@mathisis.org

https://www.facebook.com/alexandros.kofteros
https://mathisis.org

mailto:alexandros@mathisis.org
https://www.facebook.com/alexandros.kofteros
https://mathisis.org

PYTHON IN SIMPLE WORDS
Quick tutorial for beginners

Alexandros Kofteros, PhD

Τhis handbook is an introduction to Python for all ages -range(10,100)-.

Python is a special programming language. It is a high level language, very
easy to learn even by a beginner, but still powerful enough to enable the
development of almost any kind of program.

With this book:

• We learn the basic commands of Python

• We work with variables and loops

• We create our own functions

• We draw geometric shapes

• …we get to love pythons a bit more…

	About this book
	Welcome!
	1. Introduction toProgramming
	1. What is Python?
	What we are going to learn:
	The Creation of Python
	Installation of Python
	What have we learned so far?
	Activities
	Δραστηριότητες
	2. Let’s learn Python
	Primary commands
	What we are going to learn:

	Working with numbers
	Python, The calculator!
	Introduction to variables
	Working with variables
	Κεφαλαία & Μικρά!
	Working with lists
	“Lists”, ‘Lists’, Lists!
	Decisions…
	What have we learned so far?

	Activities
	3. “Many many commands”
	Program…
	What we are going to learn:

	Python Files
	Alternatively…
	About Notepad++
	Let’s Run!
	Input data
	Let's comment…
	The decisive python!
	Code error!
	Integers and oranges…
	Variable type
	Variable as Integer
	"Bugs" in the code!
	What have we learned so far?

	Activities
	Δραστηριότητες
	4. Repetitions…
	Repetitions
	What we are going to learn:

	The iterative Python!
	Breaking Good!
	One, Two, Three, For!
	While… or…
	“Nested” Repetition
	What have we learned so far?

	Activities
	ς
	5. Functions
	Functions
	What we are going to learn:

	The game of actions
	Our first function!
	Choosing between functions...
	What have we learned so far?

	Activities
	Δραστηριότητες
	TURTLE GRAPHICS!
	What we are going to learn:

	Python Modules
	The turtle module
	Pixels!
	Colors & Lines!
	Pennies up and down…
	Pythons & Geometry
	Repeat with For…
	Running in circles
	Type of angles
	Supplementary & Complementary angles
	Create a triangle
	Turtle position on the screen
	Move on the screen
	Repeating patterns!
	Repetitions & colors
	Let's fill with color!
	Shapes & Functions
	What have we learned so far?

	Activities
	Δραστηρ
	ιότητες
	IoT, Ρομπότ & Python
	BBC Micro:bit
	BBC micro:bit
	Τι θα γνωρίσουμε:

	Γνωριμία με το micro:bit
	BBC Micro Computer
	BBC micro:bit
	Python Editor
	Σύνδεση micro:bit
	Αποθήκευση αρχείου
	Έτοιμος κώδικας
	Μεταφορά αρχείου
	Ας γράψουμε κώδικα!
	Δείξε το με LED!
	Τα λάθη είναι πυθώνια…
	Ας “ρίξουμε” εντολές
	Πυξίδες & πύθωνες!
	Ας πατήσουμε κουμπιά…
	Πέτρα, Ψαλίδι, Χαρτί
	Τυχαίες επιλογές…
	Το περιβάλλον MakeCode
	“Εικονικό” micro:bit
	Βασικές εντολές micro:bit
	LED, Εικονίδια & Σχήματα
	Από τα μπλοκ στην Python…
	Κατηγορίες εντολών
	Τι μάθαμε μέχρι τώρα:

	Δραστηριότητες
	Δραστηριότητες
	MeetEdison
	Meet Edison!
	Τι θα γνωρίσουμε:

	Γνωριμία με το Edison
	Edison & Εκπαίδευση
	Edison & EdBlocks
	Edison & EdScratch
	Edison & ΕdPy
	EdDrive: ας κινηθούμε!
	Αποθήκευση κώδικα
	Αποφυγή εμποδίων
	Driving with… claps!
	Οδήγηση με… παλαμάκια!
	Edison on the line...
	What we've learned so far:

